10 research outputs found

    Simplex space-time meshes in thermally coupled two-phase flow simulations of mold filling

    Full text link
    The quality of plastic parts produced through injection molding depends on many factors. Especially during the filling stage, defects such as weld lines, burrs, or insufficient filling can occur. Numerical methods need to be employed to improve product quality by means of predicting and simulating the injection molding process. In the current work, a highly viscous incompressible non-isothermal two-phase flow is simulated, which takes place during the cavity filling. The injected melt exhibits a shear-thinning behavior, which is described by the Carreau-WLF model. Besides that, a novel discretization method is used in the context of 4D simplex space-time grids [2]. This method allows for local temporal refinement in the vicinity of, e.g., the evolving front of the melt [10]. Utilizing such an adaptive refinement can lead to locally improved numerical accuracy while maintaining the highest possible computational efficiency in the remaining of the domain. For demonstration purposes, a set of 2D and 3D benchmark cases, that involve the filling of various cavities with a distributor, are presented.Comment: 14 pages, 11 Figures, 4 Table

    A Robin-Neumann Scheme with Quasi-Newton Acceleration for Partitioned Fluid-Structure Interaction

    Full text link
    The Dirichlet-Neumann scheme is the most common partitioned algorithm for fluid-structure interaction (FSI) and offers high flexibility concerning the solvers employed for the two subproblems. Nevertheless, it is not without shortcomings: To begin with, the inherent added-mass effect often destabilizes the numerical solution severely. Moreover, the Dirichlet-Neumann scheme cannot be applied to FSI problems in which an incompressible fluid is fully enclosed by Dirichlet boundaries, as it is incapable of satisfying the volume constraint. In the last decade, interface quasi-Newton methods have proven to control the added-mass effect and substantially speed up convergence by adding a Newton-like update step to the Dirichlet-Neumann coupling. They are, however, without effect on the incompressibility dilemma. As an alternative, the Robin-Neumann scheme generalizes the fluid's boundary condition to a Robin condition by including the Cauchy stresses. While this modification in fact successfully tackles both drawbacks of the Dirichlet-Neumann approach, the price to be paid is a strong dependency on the Robin weighting parameter, with very limited a priori knowledge about good choices. This work proposes a strategy to merge these two ideas and benefit from their combined strengths. The effectiveness of this new quasi-Newton-accelerated Robin-Neumann scheme is demonstrated for different FSI simulations and compared to both Robin- and Dirichlet-Neumann variants.Comment: Keywords: Partitioned Fluid-Structure Interaction, Robin-Neumann Scheme,Interface Quasi-Newton Method

    Analyzing scaling effects on offshore wind turbines using CFD

    No full text

    What does it mean to say that economics is performative?” Forthcoming in

    No full text
    Centre de Sociologie de l’Innovation Ecole des Mines de Pari

    Treatable traits in the NOVELTY study

    No full text
    CorrigendumVolume 27, Issue 12, Respirology, pages: 1095-1095. First Published online: November 6, 2022 10.1111/resp.14406International audienceAsthma and chronic obstructive pulmonary disease (COPD) are two prevalent and complex diseases that require personalized management. Although a strategy based on treatable traits (TTs) has been proposed, the prevalence and relationship of TTs to the diagnostic label and disease severity established by the attending physician in a real-world setting are unknown. We assessed how the presence/absence of specific TTs relate to the diagnosis and severity of 'asthma', 'COPD' or 'asthma + COPD'

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore